
April 2001, ver. 1.10 Application Note 102  

Introduction
This application note contains basic programming techniques which can be used in a programming project 

involving I/O ports.  When a digital I/O card is used to control multiple devices or interpret multiple inputs, it is often 
advantageous to deal with data on the bit level rather than the byte level.  However, digital I/O cards almost always 
deal with data on the byte level, requiring an entire 8 bits of data to be read or written at once.  This application note 
will demonstrate how to conveniently and efficiently deal with your digital I/O card's data on the bit level, while still 
using the byte level interface your card provides.

Concept
The key to interpreting individual bits of a digital input or output port is the bitwise 'AND' and 'OR' operators 

of your programming language.  These operators are represented differently by various programming languages, 
with Basic using "And" and "Or", and C/C++ using the symbols "&"(ampersand) and "|" (pipe), respectively.  The 
concept of these operators is actually quite simple.  The bitwise AND works by comparing every bit of two numeric 
values and producing a resulting value based on those bit comparisons.  Bit 0 of the first number is compared to Bit 
0 of the second number, Bit 1 of the first number is then compared to Bit 1 of the second number, and so on through 
all the individual bits.  If two compared bits both have a value of 1, then that bit in the resulting value will be given 
the value of 1.  However, if either of the compared bits have a value of zero, that bit in the resulting value will be 
given the value of 0.  In this way, if both the first number's bit is 1 AND the second number's bit is 1, the resulting bit 
will be 1.  The OR operator works in a similar fashion, with the only difference being that if either of the compared 
bits are 1, the resulting bit will be 1.  See the tables below for an example of each operator.

Bit: 7 6 5 4 3 2 1 0 Bit: 7 6 5 4 3 2 1 0

1st number: 0 1 1 0 0 0 1 1 1st number: 0 1 1 0 0 0 1 1

2nd number: 1 1 0 1 0 1 1 1 2nd number: 1 1 0 1 0 1 1 1

Result: 0 1 0 0 0 0 1 1 Result: 1 1 1 1 0 1 1 1

Table 1: AND operator                                            Table 2: OR operator

Decoding Inputs
Now let's use our knowledge of the 'AND' and 'OR' operators to decode an input value from our I/O card. 

Let's assume that we have a switch connected to the fourth pin of an input port on the I/O card.  This would mean 
that the switch would control bit number 3 on our input value (bits are numbered 0,1,2,3...).  Let's also assume that 
the switch is wired so that if the switch is pressed, bit 3 of the input value will have a value of 1, while if the switch is 
not pressed, bit 3 will be 0 (see Appnote 101 for examples of switch circuits).  There will probably be several other 
devices controlling other bits of the input port, but since we are simply interested in detecting whether or not our 
switch is pressed, we need a way to "mask out" the other bits.  We can do this by ANDing the input value that we 
read with the binary value of 00001000 (notice that bit 3 is the only bit that has a value of 1).  Because all bits but bit 
3 of this value are zero, bit 3 of the input value is the only bit that can possibly make our final result nonzero.  The 
result of the AND operation will indicate whether or not the switch was pressed.  If the result is zero, the switch was 
not pressed (bit 3 was zero), but if the result is not zero, the switch was pressed (bit 3 was 1).  See the table 
representation below.

Input Value: 1 1 0 0 1 0 1 0 Input Value: 1 0 1 0 0 1 1 0

Mask Value: 0 0 0 0 1 0 0 0 Mask Value: 0 0 0 0 1 0 0 0

Result: 0 0 0 0 1 0 0 0 Result: 0 0 0 0 0 0 0 0

Table 3: Switch ON (nonzero result)                         Table 4: Switch OFF (zero result)

Bit-level Programming Techniques 
for I/O Port Access



Application Note 102:  Bit-level Programming Techniques for I/O Port Access

Constructing Output Values
Often a program which makes use of an I/O card will be controlling multiple devices connected to different 

bits of the I/O card's output port.  Different portions of the program often need to turn a particular device on or off, 
without knowing whether the other devices need to be on or off.  By using the AND and OR operators, it becomes 
easy to switch the state of one device while leaving all others unchanged.  In order to turn a device on, the current 
state of the output port (the value last written to the port) should be ORed with the value of the bit you would like to 
turn on.  If you would like to turn on bit 3, the last value written to the output port should be ORed with the binary 
value of 00001000 (note that this is 2^3 (2 raised to the 3rd power).  2 raised to the number of the bit results in the 
proper value to use for the OR operation).  The result of this OR operation should then be written to the output port. 
Similarly, if you want to turn bit 3 off, the last output value should be ANDed with 11110111.  The result of the AND 
operation should then be written to the output port.  As you can see, every time a device is turned on or off, the last 
value written to the output port is needed.  There are basically two methods for obtaining this value.  The most 
intuitive is to store the value in a variable (often works best to be global) every time a value is written to the port. 
However, a cleaner and more failproof method can be used if your I/O card supports port readback (the CRD155B 
supports the readback function).  Readback simply allows you to retrieve from the I/O card the last value that was 
written to a particular output port.

Examples
A few examples of these techniques will be given using the BASIC syntax.  Assume that any initialization of 

the card has already been performed.
Outputs:
Port = 400  'assume the output port is port 400
LastValue = 0  'turn all devices off initially

' now let's turn on the device connected to bit 5
LastValue = LastValue OR 2^5
OUT Port, LastValue

'now let's turn on bit 0
LastValue = LastValue OR 2^0
OUT Port, LastValue

'finally we'll turn bit 5 back off
LastValue = LastValue AND (255 - 2^5) 'assume we're using an 8-bit port, where 255 
OUT Port, LastValue     '                    is all bits on.

Inputs:
Port = 400 ' assume the input port is port 400
Value = INP(Port) ' read in the value from the port

'now test to see if bit 2 was on when the value was read
IF (Value AND 2^5) = 0 THEN

PRINT "Bit 5 was OFF."
ELSE

PRINT "Bit 5 was ON."
END IF

'now test to see if bit 7 was on when the value was read
IF (Value AND 2^7) THEN     'Note that the result of this test is opposite of the test 

PRINT "Bit 7 was ON."             '  above because I decided to leave out "= 0" 
ELSE

Page 2



Application Note 102:  Bit-level Programming Techniques for I/O Port Access

PRINT "Bit 7 was OFF."
END IF

Page 3



Application Note 102:  Bit-level Programming Techniques for I/O Port Access

Disclaimer:
Winford Engineering assumes no responsibility arising from the use of any circuitry described or from the use of any information contained in this 
document.  Winford Engineering reserves the right to change the contained information at any time, without notice.

Winford Engineering
4169 Four Mile Road
Bay City, MI 48706

Ph:  1-877-634-2673
FAX:  1-989-671-2941

E-mail:  sales@winfordeng.com
Web:  www.winfordeng.com

Page 4


